

    
      
          
            
  
Hybrid Information-Centric Networking

Hybrid Information-Centric Networking (hICN) is a network architecture that
makes use of IPv6 or IPv4 to implement location-independent communications. It
is largely inspired by the pioneer work of Van Jacobson on Content-Centric
Networking (RFC 8569, RFC 8609) that is a clean-slate architecture. hICN is
based on the Internet protocol and easyier to deploy in today networks and
applications. hICN brings many-to-many communications, multi-homing, multi-path,
multi-source, group communications to the Internet protocol. The current code
implements also transport protocols, with a socket API, for real-time and
capacity seeking applications. A scalable stack is available based on VPP and a
client stack is provided to support  mobile and desktop operating systems.

A detailed description of the architecture is described in the paper

Giovanna Carofiglio, Luca Muscariello, Jordan Augé, Michele Papalini, Mauro
Sardara, and Alberto Compagno. 2019. Enabling ICN in the Internet Protocol:
Analysis and Evaluation of the Hybrid-ICN Architecture. In Proceedings of the
6th ACM SIGCOMM Conference on Information-Centric Networking (ICN ‘19).
Association for Computing Machinery, New York, NY, USA, 55–66. DOI:
https://doi.org/10.1145/3357150.3357394

The project wiki page is full of resources  https://wiki.fd.io/view/HICN


Architecture


	Data identifiers and locators

	Producer/Consumer Architecture

	Packet forwarding

	Relay nodes






Getting started


	Code structure






Core library


	Core library






The VPP Plugin


	VPP Plugin






The Transport Library


	Introduction

	Build dependencies

	Build the library

	Usage

	Security

	Logging






The Portable Forwarder


	Portable forwarder






Network Control and Management


	Face manager

	Control plane support

	Telemetry






Applications and Tools


	Utility applications

	Applications

	HICN Plugin for Wireshark

	Supported platforms

	Installation

	Usage








          

      

      

    

  

    
      
          
            
  
Data identifiers and locators

Hybrid ICN makes use of data identifiers to name the data produced by an end
host. Data identifiers are encoded using a routable name prefix and a non
routable name suffix to provide the ability to index a single IP packet in an
prefix is unambigous manner. A full data name is composed of 160 bits. A
routable name prefix in IPv4 network is 32 bits long while in IPv6 is 128 bits
long. A name prefix is a valid IPv4 or IPv6 address. The 32 rightmost bits are
used by the applications to index data within the same stream.

A data source that is using the hicn stack is reacheable through IP routing
where a producer socket is listening as the producer name prefix is IP routable.

Locators are IP interface identifiers and are IPv4 or IPv6 addresses. Data
consumers are reacheable through IP routing over their locators.

For requests, the name prefix is stored in the destination address field of the
IP header while the source address field stored the locator of the consumer.



Producer/Consumer Architecture

Applications make use of the hicn network architecture by using a Prod/Cons API.
Each communication socket is connection-less as a data producer makes data
available to data consumer by pushing data into a named buffer. Consumers are
responsible for pulling data from data producers by sending requests indexing
the full data name which index a single MTU sized data packet. The core



Packet forwarding

Packet forwarding leverages IP routing as requests are forwarded using name
prefixes and replies using locators.



Relay nodes

A relay node is implemented by using a packet cache which is used to temporarily
store requests and replies. The relay node acts as a virtual proxy for the data
producers as it caches data packets which can be sent back to data consumer by
using the full name as an index. Requests must be cached and forwarded upstream
towards data producers which will be able reach back the relay nodes by using
the IP locators of the relays. Cached requests store all locators as currently
written in the source address field of the request while requests forwarded
upstream will get the source address rewritten with the relay node locator. Data
packets can reach the original consumers via the relay nodes by using the
requence of cached locators.




          

      

      

    

  

    
      
          
            
  
Code structure


Introduction

hicn is an open source implementation of Cisco’s hICN. It includes a network
stack, that implements ICN forwarding path in IPv6, and a transport stack that
implements two main transport protocols and a socket API. The transport
protocols provide one reliable transport service implementation and a real-time
transport service for audio/video media.



Directory layout




	Directory name
	Description





	lib
	Core support library



	hicn-plugin
	VPP plugin



	hicn-light
	Lightweight packet forwarder



	libtransport
	Support library with transport layer and API



	utils
	Tools for testing



	apps
	Application examples using hicn stack



	ctrl
	Tools and libraries for network management and control




hicn plugin is a VPP plugin that implement hicn packet processing as specified
in [1] The transport library is used to implement the hicn host stack and makes
use of libmemif as high performance connector between transport and the network
stack. The transport library makes use of VPP binary API to configure the local
namespace (local face management).



Release note

The current master branch provides the latest release which is compatible with
the latest VPP stable. No other VPP releases are supported nor maintained. At
every new VPP release distribution hicn master branch is updated to work with
the latest stable release. All previous stable releases are discontinued and not
maintained. The user who is interested in a specific release can always checkout
the right code tree by searching the latest commit under a given git tag
carrying the release version.

The Hybrid ICN software distribution can be installed for several platforms. The
network stack comes in two different implementations: one scalable based on VPP
and one portable based on IPC and sockets.

The transport stack is a unique library that is used for both the scalable and
portable network stacks.



Supported platforms


	Ubuntu 20.04 LTS (amd64, arm64)


	Android 10 (amd64, arm64)


	iOS 15


	macOS 12.3


	Windows 10




Other platforms and architectures may work.
You can either use released packages, or compile hicn from sources.


Ubuntu

curl -s https://packagecloud.io/install/repositories/fdio/release/script.deb.sh | sudo bash





The following debian packages for Ubuntu are available dor amd64 and arm64

facemgr-dev
facemgr
hicn-apps-dev
hicn-apps
hicn-light
hicn-plugin-dev
hicn-plugin
libhicn-dev
libhicn
libhicnctrl-dev
libhicnctrl-modules
libhicnctrl
libhicntransport-dev
libhicntransport-io-modules
libhicntransport







macOS

brew tap icn-team/hicn-tap
brew install hicn





or

git clone https://github.com/FDio/hicn.git
$ cd hicn
$ OPENSSL_ROOT_DIR=/usr/local/opt/openssl\@1.1 make build-release







Android

hICN is built as a native library for the Android NDK which are packaged
as Android archives AAR and made available in a Maven repository in
Github Packages in

https://github.com/orgs/icn-team/packages

To build from sources, refer to the Android SDK in

https://github.com/icn-team/android-sdk

Install the applications via the Google Play Store

https://play.google.com/store/apps/developer?id=ICN+Team



iOS

Clone this distro

git clone https://github.com/icn-team/ios-sdk.git
cd ios-sdk





Compile everything (dependencies and hICN modules)

make update
make all





Compile everything with Qt (dependencies, hICN modules and Viper dependencies)

make update
make all_qt







Windows

Install vcpkg

git clone https://github.com/icn-team/windows-sdk
.\windows-sdk\scripts\init.bat





cd windows-sdk
make all







Docker

Several docker images are nightly built with the latest software  for Ubuntu 18
LTS (amd64/arm64), and available on docker hub at
https://hub.docker.com/u/icnteam.

The following images are nightly built and maintained.

docker pull icnteam/vswitch:amd64
docker pull icnteam/vswitch:arm64

docker pull icnteam/vserver:amd64
docker pull icnteam/vserver:arm64

docker pull icnteam/vhttpproxy:amd64
docker pull icnteam/vhttpproxy:arm64





Other Dockerfiles are included in the main git repo for development.



Vagrant

Vagrant boxes for a virtual switch are available at
https://app.vagrantup.com/icnteam

vagrant box add icnteam/vswitch





Supported providers are libvirt, vmware and virtualbox.




References

Giovanna Carofiglio, Luca Muscariello, Jordan Augé, Michele Papalini, Mauro
Sardara, and Alberto Compagno. 2019. Enabling ICN in the Internet Protocol:
Analysis and Evaluation of the Hybrid-ICN Architecture. In Proceedings of the
6th ACM Conference on Information-Centric Networking (ICN ‘19). Association for
Computing Machinery, New York, NY, USA, 55–66.
DOI: https://doi.org/10.1145/3357150.3357394



License

This software is distributed under the following license:

Copyright (c) 2019-2022 Cisco and/or its affiliates.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at:

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.









          

      

      

    

  

    
      
          
            
  
Core library


Introduction

libhicn provides a support library coded in C designed to help developers embed
Hybrid ICN (hICN) functionalities in their applications (eg. forwarder, socket
API, etc.). Its purpose is to follow the hICN specification for which it
provides a reference implementation, abstracting the user from all internal
mechanisms, and offering an API independent of the packet format (eg. IPv4 or
IPv6). The library is designed to be portable across both desktop and
mobile platforms, and we currently aim at supporting Linux, Android, OSX and
iOS, by writing the necessary adapters to realize hICN functionality in
userspace according to the available APIs and permissions that each system
offers.

The library consists in several layers:


	the core library (hicn.h) provides a standard hICN packet format, as well as
an API allowing manipulation of packet headers;


	an hICN helper, allowing an hICN stack to be built in userspace in a portable
way, based on TUN devices and accessible though file descriptors;


	a network layer allow the sending an receiving of hICN packets on those file
descriptors, implementing both source and destination address translation as
required by the hICN mechanisms;


	finally, a “transport” API allows the forging of dummy interest and data
packets.




A commandline interface (hicnc) is also provided that uses the library and can
for instance be used as a test traffic generator. This interface can be run as
either a consumer, a producer, or a simple forwarder.



Directory layout

.
+-- CMakeLists.txt          CMkake global build file
+-- doc                     Package documentation
+-- README.md               This file
+-- src
|   +-- base.h              Base definitions for hICN implementation
|   +-- CMakeLists.txt      CMake library build file
|   +-- common.{h,c}        Harmonization layer across supported platforms
|   +-- compat.{h,c}        Compatibility layer for former API
|   +-- error.{h,c}         Error management files
|   +-- header.h            hICN header definitions
|   +-- hicn.h              Master include file
|   +-- mapme.{h,c}         MAP-Me : anchorless producer mobility mechanisms
|   +-- name.{h,c}          hICN naming conventions and name processing + IP helpers
|   +-- ops.{h,c}           Protocol-independent hICN operations
|   +-- protocol/*          Protocol headers + protocol-dependent implementations
|   +-- protocol.h          Common file for protocols







Using libhicn


Dependencies

Build dependencies:


	C11 ( clang / gcc )


	CMake 3.4




Basic dependencies: None




Installation


Release mode

mkdir build
cd build
cmake ..
make
sudo make install







Debug mode

mkdir debug
cd debug
cmake .. -DCMAKE_BUILD_TYPE=Debug
make
sudo make install










          

      

      

    

  

    
      
          
            
  
VPP Plugin


Introduction

A high-performance Hybrid ICN forwarder as a plugin to VPP.

The plugin provides the following functionalities:


	Fast packet processing


	Interest aggregation


	Content caching


	Forwarding strategies






Quick start

All of these commands should be run from the code tree root.

VPP installed with DEB pkg:

cd hicn-plugin
mkdir -p build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=/usr
make
sudo cmake --build . -- install





VPP source code - build type RELEASE:

cd hicn-plugin
mkdir -p build
cd build
cmake .. -DVPP_HOME=<vpp dir>/build-root/install-vpp-native/vpp -DCMAKE_INSTALL_PREFIX=<vpp src>/build-root/install-vpp-native/vpp
make
cmake --build . -- install





VPP source code - build type DEBUG:

cd hicn-plugin
mkdir -p build
cd build
cmake .. -DCMAKE_BUILD_TYPE=DEBUG -DVPP_HOME=<vpp dir>/build-root/install-vpp_debug-native/vpp -DCMAKE_INSTALL_PREFIX=<vpp src>/build-root/install-vpp_debug-native/vpp
make
cmake --build . -- install





CMAKE variables:


	CMAKE_INSTALL_PREFIX: set the install directory for the hicn-plugin. This
is the common path to the lib folder containing vpp_plugins and
vpp_api_test_plugins folders. Default is /usr/local.


	VPP_HOME: set the directory containing the include and lib directories of vpp.






Using hICN plugin


Dependencies

Build dependencies:


	VPP 22.02


	DEB packages (can be found https://packagecloud.io/fdio/release/install):


	vpp


	libvppinfra-dev


	vpp-dev












Runtime dependencies:


	VPP 22.02


	DEB packages (can be found https://packagecloud.io/fdio/release/install):


	vpp


	vpp-plugin-core


	vpp-plugin-dpdk (optional - only to use DPDK compatible nics)












Hardware support (not mandatory):


	DPDK [http://DPDK.org/] compatible NICs







Getting started

In order to start, the hICN plugin requires a running instance of VPP.
The steps required to successfully start hICN are:


	Setup the host to run VPP


	Configure VPP to use DPDK compatible nics


	Start VPP


	Configure VPP interfaces


	Configure and start hICN




Detailed information for configuring VPP can be found at
https://wiki.fd.io/view/VPP.


Setup the host for VPP

It is preferable to have hugepages enabled in the system, although it is not a requirement:

sudo sysctl -w vm.nr_hugepages=1024





In order to use a DPDK interface, the uio and uio_pci_generic or vfio_pci
modules need to be loaded in the kernel.

sudo modprobe uio
sudo modprobe uio_pci_generic
sudo modprobe vfio_pci





If the DPDK interface we want to assign to VPP is up, we must bring it down:

sudo ifconfig <interface_name> down





or

sudo ip link set <interface_name> down







Configure VPP

The file /etc/VPP/startup.conf contains a set of parameters to setup VPP
at startup. The following example sets up VPP to use a DPDK interface:

unix {
  nodaemon
  log /tmp/vpp.log
  full-coredump
}

api-trace {
  on
}

api-segment {
  gid vpp
}

dpdk {
  dev 0000:08:00.0
}

plugins {
        ## Disable all plugins by default and then selectively enable specific plugins
        plugin default { disable }
        plugin dpdk_plugin.so { enable }
        plugin acl_plugin.so { enable }
        plugin memif_plugin.so { enable }
        plugin hicn_plugin.so { enable }

        ## Enable all plugins by default and then selectively disable specific plugins
        # plugin dpdk_plugin.so { disable }
        # plugin acl_plugin.so { disable }
}





0000:08:00.0 must be replaced with the actual PCI address of the DPDK
interface.



Start VPP

VPP can be started as a process or a service:

Start VPP as a service in Ubuntu 20.04+:

sudo systemctl start vpp





Start VPP as a process:

sudo vpp -c /etc/vpp/startup.conf







Configure hICN plugin

The hICN plugin can be configured either using the VPP command-line interface
(CLI), through a configuration file or through the VPP binary API.


hICN plugin CLI

The CLI commands for the hICN plugin start all with the hicn keyword.
To see the full list of command available type:

sudo vppctl
vpp# hicn ?





hicn face show: list the available faces in the forwarder.

hicn face show [<face_id>| type <ip/udp>]
  <face_id>                   :face id of which we want to display the informations
  <ip/udp>                    :shows all the ip or udp faces available





hicn pgen client: set an vpp forwarder as an hicn packet generator client.

hicn pgen client src <addr> n_ifaces <n_ifaces> name <prefix> lifetime <interest-lifetime> intfc <data in-interface> max_seq <max sequence number> n_flows <number of flows>
  <src_addr>                :source address to use in the interests, i.e., the locator for routing the data packet back
  <n_ifaces>                :set the number of ifaces (consumer faces) to emulate. If more than one, each interest is sent <n_ifaces> times, each of it with a different source address calculated from <src_addr>
  <prefix>                  :prefix to use to generate hICN names
  <interest-lifetime>       :lifetime of the interests
  <data in-interface>       :interface through which the forwarder receives data
  <max sequence number>     :max the sequence number to use in the interest. Cycling between 0 and this value
  <number of flows>         :emulate multiple flows downloaded in parallel





hicn pgen server: set an vpp forwarder as an hicn packet generator client.

hicn pgen server name <prefix> intfc <interest in-interface> size <payload_size>
  <prefix>                      :prefix to use to reply to interest
  <interest in-interface>       :interface through which the forwarder receives interest
  <payload_size>                :size of the data payload





hicn show: show forwarder information.

hicn show [detail] [strategies]
  <detail>                      :shows additional details as pit,cs entries allocation/deallocation
  <strategies>                  :shows only the available strategies int he forwarder





hicn strategy mw set: set the weight for a face.

hicn strategy mw set prefix <prefix> face <face_id> weight <weight>
  <prefix>                      :prefix to which the strategy applies
  <face_id>                     :id of the face to set the weight
  <weight>                       :weight





hicn enable: enable hICN forwarding pipeline for an ip prefix.

hicn enable <prefix>
  <prefix>                      :prefix for which the hICN forwarding pipeline is enabled





hicn disable: disable hICN forwarding pipeline for an ip prefix.

hicn enable <prefix>
  <prefix>                      :prefix for which the hICN forwarding pipeline is disable







hICN plugin configuration file

A configuration can be use to setup the hicn plugin when vpp starts.
The configuration file is made of a list of CLI commands. In order to set vpp
to read the configuration file, the file /etc/vpp/startup.conf needs to be
modified as follows:

unix {
  nodaemon
  log /tmp/vpp.log
  full-coredump
  startup-config <path to configuration file>
}







hICN plugin binary API

The binary api, or the vapi, can be used as well to configure the hicn plugin.
For each CLI command there is a corresponding message in the binary api.
The list of messages is available in the file hicn.api (located in
hicn/hicn-plugin/src/).




Example: consumer and producer ping

In this example, we connect two vpp forwarders, A and B, each of them running
the hicn plugin. On top of forwarder A we run the ping_client application,
on top of forwarder B we run the ping_server application. Each application
connects to the underlying forwarder through a memif-interface. The two
forwarders are connected through a dpdk link.


Forwarder A (client)

sudo vppctl
vpp# set interface ip address TenGigabitEtherneta/0/0 2001::2/64
vpp# set interface state TenGigabitEtherneta/0/0 up
vpp# ip route add b002::1/64 via remote 2001::3 TenGigabitEtherneta/0/0
vpp# hicn enable b002::1/64







Forwarder B (server)

sudo vppctl
vpp# set interface ip address TenGigabitEtherneta/0/1 2001::3/64
vpp# set interface state TenGigabitEtherneta/0/1 up





Once the two forwarder are started, run the hicn-ping-server application on the
host where the forwarder B is running:

sudo hicn-ping-server -n b002::1/128 -z memif_module





Then hicn-ping-client on the host where forwarder B is running:

sudo hicn-ping-client -n b002::1 -z memif_module








Example: packet generator

The packet generator can be used to test the performance of the hICN plugin, as
well as a tool to inject packet in a forwarder or network for other test use
cases It is made of two entities, a client that inject interest into a vpp
forwarder and a server that replies to any interest with the corresponding
data. Both client and server can run on a vpp that is configured to forward
interest and data as if they were regular ip packet or exploiting the hICN
forwarding pipeline (through the hICN plugin). In the following examples we show
how to configure the packet generator in both cases. We use two forwarder A and
B as in the previous example. However, both the client and server packet
generator can run on the same vpp forwarder is needed.


IP Forwarding


Forwarder A (client)

sudo vppctl
vpp# set interface ip address TenGigabitEtherneta/0/0 2001::2/64
vpp# set interface state TenGigabitEtherneta/0/0 up
vpp# ip route add b001::/64 via 2001::3 TenGigabitEtherneta/0/0
vpp# ip route add 2001::3 via TenGigabitEtherneta/0/0
vpp# hicn pgen client src 2001::2 name b001::1/64 intfc TenGigabitEtherneta/0/0
vpp# exec /<path_to>pg.conf
vpp# packet-generator enable-stream hicn-pg





Where the file pg.conf contains the description of the stream to generate
packets.  In this case the stream sends 10 millions packets at a rate of 1Mpps

packet-generator new {
  name hicn-pg
  limit 10000000
  size 74-74
  node hicnpg-interest
  rate 1e6
  data {
    TCP: 5001::2 -> 5001::1
    hex 0x000000000000000050020000000001f4
    }
}







Forwarder B (server)

sudo vppctl
vpp# set interface ip address TenGigabitEtherneta/0/1 2001::3/64
vpp# set interface state TenGigabitEtherneta/0/1 up
vpp# hicn pgen server name b001::1/64 intfc TenGigabitEtherneta/0/1








hICN Forwarding


Forwarder A (client)

sudo vppctl
vpp# set interface ip address TenGigabitEtherneta/0/0 2001::2/64
vpp# set interface state TenGigabitEtherneta/0/0 up
vpp# ip route add b001::/64 via 2001::3 TenGigabitEtherneta/0/0
vpp# hicn enable b001::/64
vpp# create loopback interface
vpp# set interface state loop0 up
vpp# set interface ip address loop0 5002::1/64
vpp# ip neighbor loop0 5002::2 de:ad:00:00:00:00
vpp# hicn pgen client src 5001::2 name b001::1/64 intfc TenGigabitEtherneta/0/0
vpp# exec /<path_to>pg.conf
vpp# packet-generator enable-stream hicn-pg





The file pg.conf is the same showed in the previous example



Forwarder B (server)

sudo vppctl
vpp# set interface ip address TenGigabitEtherneta/0/1 2001::3/64
vpp# set interface state TenGigabitEtherneta/0/1 up
vpp# create loopback interface
vpp# set interface state loop0 up
vpp# set interface ip address loop0 2002::1/64
vpp# ip neighbor loop1 2002::2 de:ad:00:00:00:00
vpp# ip route add b001::/64 via 2002::2 loop0
vpp# hicn enable b001::/64
vpp# hicn pgen server name b001::1/64 intfc loop0












          

      

      

    

  

    
      
          
            
  
Introduction

The transport library provides transport services and socket API for
applications willing to communicate using the hICN protocol stack.

Overview:


	Implementation of the hICN core objects (interest, data, name..) exploiting
the API provided by libhicn.


	IO modules for seamlessly connecting the application to the hicn-plugin for VPP [https://github.com/FDio/vpp] or the
hicn-light forwarder.


	Transport protocols (RAAQM, CBR, RTC)


	Transport services (authentication, integrity, segmentation, reassembly,
naming)


	Interfaces for applications (from low-level interfaces for interest-data
interaction to high level interfaces for Application Data Unit interaction)






Build dependencies


Ubuntu

sudo apt install libasio-dev libconfig++-dev libssl-dev





If you wish to use the library for connecting to the vpp hicn-plugin, you will
need to also install vpp and its libraries.

# Prevent vpp to set sysctl
export VPP_INSTALL_SKIP_SYSCTL=1
VPP_VERSION=$(cat "${VERSION_PATH}" | grep VPP_DEFAULT_VERSION | cut -d ' ' -f 2 | tr -d '"' | grep -Po '\d\d.\d\d')

curl -s https://packagecloud.io/install/repositories/fdio/${VPP_VERSION//./}/script.deb.sh | bash
curl -L https://packagecloud.io/fdio/${VPP_VERSION//./}/gpgkey | apt-key add -
sed -E -i 's/(deb.*)(\[.*\])(.*)/\1\3/g' /etc/apt/sources.list.d/fdio_${VPP_VERSION//./}.list
apt-get update

apt-get install -y \
  vpp-dev \
  libvppinfra-dev \
  vpp-plugin-core \
  vpp \
  libvppinfra





You can get them either from from the vpp packages or the source code. Check the
VPP wiki [https://wiki.fd.io/view/VPP] for instructions.



macOS

We recommend to use HomeBrew [https://brew.sh/] for installing the libasio
dependency:

brew install asio libconfig openssl@1.1





Since VPP does not support macOS, the IO module memif is not built.




Build the library

The library is built by default from the main CMakeLists.txt.
If you have all the dependencies installed, including libhicn,
you can also build libtransport alone:

cd libtransport
mkdir build && cd build
cmake ..
cmake --build .






Compile options

The build process can be customized with the following options:


	CMAKE_INSTALL_PREFIX: The path where you want to install the library.


	CMAKE_BUILD_TYPE: The build configuration. Options: Release, Debug.
Default is Release.


	ASIO_HOME: The folder containing the libasio headers.


	VPP_HOME: The folder containing the installation of VPP.




An option can be set using cmake -DOPTION=VALUE.



Install the library

For installing the library, from the cmake build folder:

cmake --build . -- install








Usage

Examples on how to use the library can be found in the apps folder of the project.
In particular you can check the hiperf application, which demonstrates
how to use the API to interact with the hicn transport, both for consumer and producer.


Configuration file

The transport can be configured using a configuration file. There are two ways
to tell libransport where to find the configuration file:


	programmatically - you set the configuration file path in your application:




// Set conf file path
std::string conf_file = "/opt/hicn/etc/transport.config"
// Parse config file
transport::interface::global_config::parseConfigurationFile(conf_file);






	using the environment variable TRANSPORT_CONFIG:




export TRANSPORT_CONFIG=/opt/hicn/etc/transport.config
./hiperf -C b001::1





Here is an example of configuration file:

// Configuration for io_module
io_module = {
  path = [];
  name = "forwarder_module";
};

// Configuration for forwarder io_module
forwarder = {
  n_threads = 1;

  connectors = {
    c0 = {
      /* local_address and local_port are optional */
      local_address = "127.0.0.1";
      local_port = 33436;
      remote_address = "127.0.0.1";
      remote_port = 33436;
    }
  };

  listeners = {
    l0 = {
      local_address = "127.0.0.1";
      local_port = 33437;
    }
  };
};

// Logging
log = {
  // Log level (INFO (0), WARNING (1), ERROR (2), FATAL (3))
  minloglevel = 0;

  // Verbosity level for debug logs
  v= 2;

  // Log to stderr
  logtostderr = true;

  // Get fancy colored logs
  colorlogtostderr = true;

  // Log messages above this level also to stderr
  stderrthreshold = 2;

  // Set log prefix for each line log
  log_prefix = true;

  // Log dir
  log_dir = "/tmp";

  // Log only specific modules.
  // Example: "membuf=2,rtc=3"
  vmodule = "";

  // Max log size in MB
  max_log_size = 10;

  // Log rotation
  stop_logging_if_full_disk = true;
};








Security

hICN has built-in authentication and integrity features by either:


	Cryptographically signing all packets using an asymmetric key (like RSA) or a
symmetric one (like HMAC). The latter requires that all parties have prior
access to the same key. Beware that this method is computationally expensive
and impacts max throughput and CPU usage.


	Using manifests. Manifests are special packets that holds the digests of a
group of data packets. Only the manifest needs to be signed and authenticated;
other packets are authenticated simply by verifying that their digest is
present in a manifest.





Per-packet signatures

To enable per-packet signature with asymmetric signing:


	On the producer, disable manifests (which are ON by default):

producer_socket->setSocketOption(GeneralTransportOptions::MANIFEST_MAX_CAPACITY, 0u);







	On the producer, instantiate an AsymmetricSigner object by passing either an
asymmetric pair of keys as
EVP_KEY [https://www.openssl.org/docs/man3.0/man3/EVP_PKEY_new.html] object
or a keystore path and password as strings:

std::shared_ptr<Signer> signer = std::make_shared<AsymmetricSigner>("./rsa.p12", "hunter2");







	Pass the signer object to libtransport:

producer_socket->setSocketOption(GeneralTransportOptions::SIGNER, signer);







	On the consumer, instantiate an AsymmetricVerifer object by passing either a
certificate as a X509 [https://www.openssl.org/docs/man1.0.2/man3/x509.html]
object, an asymmetric public key as a
EVP_KEY [https://www.openssl.org/docs/man3.0/man3/EVP_PKEY_new.html] object
or a certificate path as a string:

std::shared_ptr<Verifier> verifier = std::make_shared<Verifier>("./rsa.crt");







	Pass the verifier object to libtransport:

consumer_socket->setSocketOption(GeneralTransportOptions::VERIFIER, verifier);









To enable per-packet signature with symmetric signing, follow the above steps
replacing AsymmetricSigner with SymmetricSigner and AsymmetricVerifer with
SymmetricSigner. A SymmetricSigner only has one constructor which expects a
CryptoSuite and a passphrase. A SymmetricVerifier also has a single
constructor which expects a passphrase:

std::shared_ptr<Signer> signer = std::make_shared<SymmetricSigner>(CryptoSuite::HMAC_SHA256, "hunter2");
std::shared_ptr<Verifier> verifier = std::make_shared<SymmetricVerifier>("hunter2");





Check Supported crypto suites for the list of
available suites.



Enabling manifests


	Follow steps 2-5 in Per-packet signatures.


	By default, a manifest has a maximum capacity C_max of 30 packets. To change
this value:

producer_socket->setSocketOption(GeneralTransportOptions::MANIFEST_MAX_CAPACITY, 20u);









In the case of RTC, manifests are sent after the data they contain and on the
consumer side, data packets are immediately forwarded to the application, even
if they weren’t authenticated yet via a manifest. This is to minimize latency.
The digest of incoming data packets are kept in a buffer while waiting for
manifests to arrive. When the buffer size goes above a threshold T, an alert
is raised by the verifier object. That alert threshold is computed as follows:

T = manifest_factor_alert * C_max





The value of C_max is passed by the producer to the consumer at the start of
the connection. manifest_factor_alert is a consumer socket option. It
basically acts on the resilience of manifests against networks losses and
reflects the application’s tolerance to unverified packets: a higher value gives
the transport the time needed to recover from several manifest losses but
potentially allows a larger number of unverified packet to go the application
before alerts are triggered. It is set to 20 by default and should always be
>= 1. To change it:

consumer_socket_->setSocketOption(GeneralTransportOptions::MANIFEST_FACTOR_ALERT, 10u);





The buffer does not keep unverified packets indefinitely. After a certain amount
of packets have been received and processed (and were verified or not), older
packets still unverified are flushed out. This is to prevent the buffer to grow
uncontrollably and to raise alerts for packets that are not relevant to the
application anymore. That threshold of relevance is computed as follows:

T = manifest_factor_relevant * C_max





manifest_factor_relevant is a consumer socket option. It is set to 100 by
default. Its value must be set so that manifest_factor_relevant > manifest_factor_alert >= 1. If manifest_factor_relevant <= manifest_factor_alert, no alert will ever be raised. To change it:

consumer_socket_->setSocketOption(GeneralTransportOptions::MANIFEST_FACTOR_RELEVANT, 200u);







Handling authentication failures

When a data packet fails authentication, or when the unverified buffer is full
in the case of RTC, an alert is triggered by the verifier object. By default
libtransport aborts the connection upon reception of that alert. You may want to
intercept authentication failures in your application:


	Define a callback with arguments an uint32_t integer, which will be set to
the suffix of the faulty packet, and a auth::VerificationPolicy, which will
be set to the action suggested by the verifier object. The callback must
return another auth::VerificationPolicy which will be the actual action
taken by libtransport:

auth::VerificationPolicy onAuthFailed(uint32_t suffix, auth::VerificationPolicy policy) {
  std::cout << "auth failed for packet " << suffix << std::endl;
  return auth::VerificationPolicy::ACCEPT;
}







	Give that callback to your Verifier object as well as a list of
auth::VerificationPolicy to intercept (if left empty, will be set by
default to {ABORT, DROP}):

verifier->setVerificationFailedCallback(&onAuthFailed, {
  auth::VerificationPolicy::ABORT,
  auth::VerificationPolicy::DROP,
  auth::VerificationPolicy::UNKNOWN,
});











Supported crypto suites

The following CryptoSuite are supported by libtransport:

ECDSA_BLAKE2B512
ECDSA_BLAKE2S256
ECDSA_SHA256
ECDSA_SHA512
RSA_BLAKE2B512
RSA_BLAKE2S256
RSA_SHA256
RSA_SHA512
HMAC_BLAKE2B512
HMAC_BLAKE2S256
HMAC_SHA256
HMAC_SHA512
DSA_BLAKE2B512
DSA_BLAKE2S256
DSA_SHA256
DSA_SHA512








Logging

Internally libtransport uses glog as logging library. If you want to have a more
verbose transport log when launching a test or an app, you can set environment
variables in this way:

GLOG_v=4 hiperf -S b001::/64





For a more exhaustive list of options, please check the instructions in the glog
README [https://github.com/google/glog#setting-flags].

Useful options include enabling logging per module. Also you can compile out
useless messages in release builds.




          

      

      

    

  

    
      
          
            
  
Portable forwarder


Introduction

hicn-light is a portable forwarder that makes use of IPC and standard sockets
to communicate.



Using hicn-light


Dependencies

Build dependencies:


	C11 ( clang / gcc )


	CMake 3.10




Basic dependencies:


	OpenSSL


	pthreads


	libevent







hicn-light executables

hicn-light is a set of binary executables that are used to run a forwarder instance.
The forwarder can be run and configured using the commands:


	hicn-light-daemon


	hicn-light-control




Use the -h option to display the help messages.


hicn-light daemon

The command hicn-light-daemon runs the hicn-light forwarder. The forwarder can be executed
with the following options:

hicn-light-daemon [--port port] [--daemon] [--capacity objectStoreSize] [--log level]
                [--log-file filename] [--config file]

Options:
--port <tcp_port>               = tcp port for local in-bound connections
--daemon                        = start as daemon process
--capacity <objectStoreSize>    = maximum number of content objects to cache. To disable the cache
                                  objectStoreSize must be 0.
                                  Default vaule for objectStoreSize is 100000
--log <log_granularity>         = sets the log level. Available levels: trace, debug, info, warn, error, fatal
--log-file <output_logfile>     = file to write log messages to (required in daemon mode)
--config <config_path>          = configuration filename





The configuration file contains configuration lines as per hicn-light-control (see below for all
the available commands). If logging level or content store capacity is set in the configuration
file, it overrides the command_line.

In addition to the listeners setup in the configuration file, hicn-light-daemon will listen
on TCP and UDP ports specified by the –port flag (or default port).
It will listen on both IPv4 and IPv6 if available. The default port for hicn-light is 9695.



hicn-light-control

hicn-light-control can be used to send command to the hicn-light forwarder and configure it.
The command can be executed in the following way:

hicn-light-control [commands]

Options:
    -h                    = This help screen
    commands              = configuration line to send to hicn-light (use 'help' for list)






Available commands in hicn-light-control

This is the full list of available commands in hicn-light-control. This commands can be used
from the command line running hicn-light-control as explained before, or listing them in a
configuration file.

The list of commands can be navigated using hicn-light-control help, hicn-light-control help <object>, hicn-light-control help <object> <action>.

add listener: creates a TCP or UDP listener with the specified options on the local forwarder.
For local connections (application to hicn-light) we expect a TCP listener. The default port for
the local listener is 9695.

add listener <protocol> <symbolic> <local_address> <local_port> <interface>

  <symbolic>        :User defined name for listener, must start with alpha and bealphanum
  <protocol>        :tcp | udp
  <localAddress>    :IPv4 or IPv6 address
  <local_port>      :TCP/UDP port
  <interface>       :interface on which to bind





add connection: creates a TCP or UDP connection on the local forwarder with the specified options.

add connection <protocol> <symbolic> <remote_ip> <remote_port> <local_ip> <local_port>

  <protocol>              : tcp | udp
  <symbolic>              : symbolic name, e.g. 'conn1' (must be unique, start with alpha)
  <remote_ip>             : the IPv4 or IPv6 of the remote system
  <remote_port>           : the remote TCP/UDP port
  <local_ip>              : local IP address to bind to
  <local_port>            : local TCP/UDP port





list: lists the connections, routes or listeners available on the local hicn-light forwarder.

list <connections | routes | listeners>





add route: adds a route to the specified connection.

add route <symbolic | connid> <prefix> <cost>

  <symbolic>   :The symbolic name for an exgress (must be unique, start with alpha)
  <connid>:    :The egress connection id (see 'list connection' command)
  <prefix>:    :ipAddress/netmask
  <cost>:      :positive integer representing cost





remove connection: removes the specified connection. At the moment, this commands is available
only for UDP connections, TCP is ignored.

remove connection <symbolic | connid>

  <symbolic>   :The symbolic name for an exgress (must be unique, start with alpha)
  <connid>:    :The egress connection id (see 'list connection' command)





remove route: remove the specified prefix for a local connection.

remove route <symbolic | connid> <prefix>

  <connid>    : the alphanumeric name of a local connection
  <prefix>    : the prefix (ipAddress/netmask) to remove





serve cache: enables/disables replies from local content store (if available).

serve cache <on|off>





store cache:  enables/disables the storage of incoming data packets in the local content store
(if available).

store cache <on|off>





clear cache: removes all the cached data form the local content store (if available).

clear cache





set strategy: sets the forwarding strategy for a give prefix. There are 4 different strategies
implemented in hicn-light:


	random: each interest is forwarded randomly to one of the available output connections.


	loadbalancer: each interest is forwarded toward the output connection with the lowest number
of pending interests. The pending interest are the interest sent on a certain connection but
not yet satisfied. More information are available in:
G. Carofiglio, M. Gallo, L. Muscariello, M. Papalini, S. Wang,
“Optimal multipath congestion control and request forwarding in information-centric networks”,
ICNP 2013.


	low_latency: uses the face with the lowest latency. In case more faces have similar
latency the  strategy uses them in parallel.


	replication


	bastpath




set strategy <prefix> <strategy>

  <preifx>    : the prefix to which apply the forwarding strategy
  <strategy>  : random | loadbalancer | low_latency | replication | bestpath





set wldr: turns on/off WLDR on the specified connection. WLDR (Wireless Loss Detiection and
Recovery) is a protocol that can be used to recover losses generated by unreliable wireless
connections, such as WIFI. More information on WLDR are available in:
G. Carofiglio, L. Muscariello, M. Papalini, N. Rozhnova, X. Zeng,
“Leveraging ICN In-network Control for Loss Detection and Recovery in Wireless Mobile networks”,
ICN 2016. Notice that WLDR is currently available only for UDP connections. In order to work
properly, WLDR needs to be activated on both side of the connection.

set wldr <on|off> <symbolic | connid>

  <symbolic>   :The symbolic name for an exgress (must be unique, start with alpha)
  <connid>:    :The egress connection id (see 'help list connections')





set mapme: enables/disables mapme, enables/disables mapme discovery, set the timescale value (expressed in milliseconds), set the retransmission time value (expressed in milliseconds).

mapme set enable <on|off>
mapme set discovery <on|off>
mapme set timescale <milliseconds>
mapme set retx <milliseconds>





quit: exits the interactive bash.




hicn-light configuration file example

This is an example of a simple configuration file for hicn-light. It can be loaded by running
the command hicn-light-daemon --config configFile.cfg, assuming the file name is configFile.cfg.

# Create a local listener on port 9199. This will be used by the applications to talk with the forwarder
add listener udp local0 192.168.0.1 9199 eth0

# Create a connection with a remote hicn-light-daemon, with a listener on 192.168.0.20 12345
add connection udp conn0 192.168.0.20 12345 192.168.0.1 9199 eth0

# Add a route toward the remote node
add route conn0 c001::/64 1










          

      

      

    

  

    
      
          
            
  
Face manager


Overview

The architecture of the face manager is built around the concept of interfaces,
which allows for a modular and extensible deployment.

Interfaces are used to implement in isolation various sources of information
which help with the construction of faces (such as network interface and service
discovery), and with handling the heterogeneity of host platforms.


Platform and supported interfaces

Currently, Android, Linux and MacOS are supported through the following
interfaces:


	hicn-light [Linux, Android, MacOS, iOS]
An interface to the hicn-light forwarder, and more specifically to the Face
Table and FIB data structures. This component is responsible to effectively
create, update and delete faces in the forwarder, based on the information
provided by third party interfaces, plus adding default routes for each of
the newly created face. The communication with the forwarder is based on the
hicn control library (libhicnctrl).


	netlink [Linux, Android]
The default interface on Linux systems (including Android) to communicate
with the kernel and receive information from various sources, including link
and address information (both IPv4 and IPv6) about network interfaces.


	android_utility [Android only]
Information available through Netlink is limited with respect to cellular
interfaces. This component allows querying the Android layer through SDK
functions to get the type of a given network interface (Wired, WiFi or
Cellular).


	bonjour [Linux, Android]
This component performs remote service discovery based on the bonjour
protocol to discover a remote hICN forwarder that might be needed to
establish overlay faces.


	network_framework [MacOS, iOS]

This component uses the recommended Network framework on Apple devices,
which provided all required information to query faces in a unified API:
link and address information, interface types, and bonjour service
discovery.








Developing a new interface


Dummy template

The face manager source code includes a template that can be used as a skeleton
to develop new faces. It can be found in src/interface/dummy/dummy.{h,c}. Both
include guard and specific interface functions are prefixed by a (short)
identifier which acts as a namespace for interface specific code (in our case
the string ‘dummy_’).

Registration and instantiation of the different interfaces is currently done at
compile time in the file src/api.c, and the appropriate hooks to use the dummy
interface are available in the code between #if 0/#endif tags.


Interface template header and configuration parameters

All interfaces have a standard interface defined in src/interface.{h,c}, and
as such the header file is only used to specify the configuration parameters of
the interface, if any.

In the template, these configuration options are empty:

/*
 * Configuration data
 */
typedef struct {
    /* ... */
} dummy_cfg_t;







Overview of the interface template

The file starts with useful includes:

- the global include `<hicn/facemgr.h>` : this provides public facing elements
    of the face manager, such the standard definition of faces (`face_t` from
    `libhicnctrl`), helper classes (such as `ip_address_t` from `libhicn`), etc.
- common.h
- facelet.h : facelets are the basic unit of communication between the face
manager and the different interfaces. They are used to construct the faces
incrementally.
- interface.h : the parent class of interfaces, such as the current dummy
interface.





Each interface can hold a pointer to an internal data structure, which is
declared as follows:

/*
 * Internal data
 */
typedef struct {
    /* The configuration data will likely be allocated on the stack (or should
     * be freed) by the caller, we recommend to make a copy of this data.
     * This copy can further be altered with default values.
     */
    dummy_cfg_t cfg;

    /* ... */

    int fd; /* Sample internal data: file descriptor */
} dummy_data_t;





We find here a copy of the configuration settings (which allows the called to
instantiate the structure on the stack), as well as a file descriptor
(assuming most interfaces will react on events on a file descriptor).

The rest of the file consists in the implementation of the interface, in
particular the different function required by the registration of a new
interface to the system. They are grouped as part of the interface_ops_t data
structure declared at the end of the file:

interface_ops_t dummy_ops = {
    .type = "dummy",
    .initialize = dummy_initialize,
    .finalize = dummy_finalize,
    .callback = dummy_callback,
    .on_event = dummy_on_event,
};





The structure itself is declared and documented in src/interface.h

/**
 * \brief Interface operations
 */
typedef struct {
    /** The type given to the interfaces */
    char * type;
    /* Constructor */
    int (*initialize)(struct interface_s * interface, void * cfg);
    /* Destructor */
    int (*finalize)(struct interface_s * interface);
    /* Callback upon file descriptor event (iif previously registered) */
    int (*callback)(struct interface_s * interface);
    /* Callback upon facelet events coming from the face manager */
    int (*on_event)(struct interface_s * interface, const struct facelet_s * facelet);
} interface_ops_t;





Such an interface has to be registered first, then one (or multiple) instance(s)
can be created (see src/interface.c for the function prototypes, and
src/api.c for their usage).


	interface registration:




extern interface\_ops\_t dummy\_ops;

/* [...] */

rc = interface\_register(&dummy\_ops);
if (rc < 0)
    goto ERR_REGISTER;






	interface instantiation:




#include "interfaces/dummy/dummy.h"

/* [...] */

rc = facemgr_create_interface(facemgr, "dummy0", "dummy", &facemgr->dummy);
if (rc < 0) {
    ERROR("Error creating 'Dummy' interface\n");
    goto ERR_DUMMY_CREATE;
}







Implementation of the interface API

We now quickly go other the different functions, but their usage will be better
understood through the hands-on example treated in the following section.

In the template, the constructor is the most involved as it need to:


	initialize the internal data structure:




    dummy_data_t * data = malloc(sizeof(dummy_data_t));
    if (!data)
        goto ERR_MALLOC;
    interface->data = data;






	process configuration parameters, eventually setting some default values:




    /* Use default values for unspecified configuration parameters */
    if (cfg) {
        data->cfg = *(dummy_cfg_t *)cfg;
    } else {
        memset(&data->cfg, 0, sizeof(data->cfg));
    }






	open an eventually required file descriptor




For the sake of simplicity, the current API only supports a single file
descriptor per-interface, and it has to be created in the constructor, and
set as the return value so as to be registered by the system, and added to the
event loop for read events. A return value of 0 means the interface does not
require any file descriptor. As usual, a negative return value indicates an
error.

    data->fd = 0;

    /* ... */

    /*
     * We should return a negative value in case of error, and a positive value
     * otherwise:
     *  - a file descriptor (>0) will be added to the event loop; or
     *  - 0 if we don't use any file descriptor
     */
    return data->fd;





While support for multiple file descriptors might be added in the future, an
alternative short-term implementation might consider the instantiation of
multiple interface, as is done for Bonjour in the current codebase, in
src/api.c.

Data reception on the file descriptor will get the callback function called, in
our case dummy_callback. Finally, the destructor dummy_finalize should close
an eventual open file descriptor.

In order to retrieve the internal data structure, that should in particular
store such a file descriptor, all other function but the constructor can
dereference it from the interface pointer they receive as parameter:

dummy_data_t * data = (dummy_data_t*)interface->data;







Raising and receiving events

An interface will receive events in the form of a facelet through the *_on_event
function. It can then use the facelet API we have described above to read
information about the face.

As this information is declared const, the interface can either create a new
facelet (identified by the same netdevice and protocol family), or eventually
clone it.

The facelet event can then be defined and raised to the face manager for further
processing through the following code:

    facelet_set_event(facelet, EVENT_TYPE_CREATE);
    interface_raise_event(interface, facelet);





Here the event is a facelet creation (EVENT_TYPE_CREATE). The full facelet API
and the list of possible event types is available in src/facelet.h



Integration in the build system

The build system is based on CMake. Each interface should declare its source
files, private and public header files, as well as link dependencies in the
local CMakeLists.txt file.




Hands-on


Architecture

In order to better illustrate the development of a new interface, we will
consider the integration of a sample server providing a signal instructing the
face manager to alternatively use either the WiFi or the LTE interface. The code
of this server is available in the folder examples/updownsrv/, and the
corresponding client code in examples/updowncli.

Communication between client and server is done through unix sockets over an
abstract namespace (thereby not using the file system, which would cause issues
on Android). The server listens for client connections, and periodically
broadcast a binary information to all connected clients, in the form of one byte
equal to either \0 (which we might interpret as enable LTE, disable WiFi), or \1
(enable WiFi, disable LTE).

Our objective is to develop a new face manager interface that would listen to
such event in order to update the administrative status of the current faces.
This would thus alternatively set the different interfaces administratively up
and down (which takes precedence over the actual status of the interface when
the forwarder establishes the set of available next hops for a given prefix).
The actual realization of such queries will be ultimately performed by the
hicn-light interface.



Sample server and client

In the folder containing the source code of hICN, the following commands allow
to run the sample server:

cd ctrl/facemgr/examples/updownsrv
make
./updownsrv





The server should display “Waiting for clients…”

Similar commands allow to run the sample client:

cd ctrl/facemgr/examples/updowncli
make
./updowncli





The client should display “Waiting for server data…”, then every couple of
seconds display either “WiFi” or “LTE”.



Face manager interface

An example illustrating how to connect to the dummy service from updownsrv is
provided as the updown interface in the facemgr source code.

This interface periodically swaps the status of the LTE interface up and down.
It is instantiated as part of the facemgr codebase when the code is compiled
with the ``-DWITH_EXAMPLE_UPDOWN` cmake option.







          

      

      

    

  

    
      
          
            
  
Control plane support

A new control plane for hicn is under construction.




          

      

      

    

  

    
      
          
            
  
Telemetry

Tools to collect telemetry from hICN forwarders.


Introduction

The project contains two plugins for collectd [https://github.com/collectd/collectd]:


	vpp: to collect statistics for VPP


	vpp-hicn: to collect statistics for hICN [https://github.com/FDio/hicn]




Currently the two plugins provide the following functionalities:


	vpp: statistics (rx/tx bytes and packets) for each available interface.


	vpp-hicn: statistics (rx/tx bytes and packets) for each available face.






Quick start

From the code tree root:

cd telemetry
mkdir -p build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=/usr
make
sudo make install







Using hICN collectd plugins


Platforms

hICN collectd plugins have been tested in:


	Ubuntu 20.04 LTS






Dependencies

Build dependencies:

VPP 22.02, Debian packages can be found on
packagecloud [https://packagecloud.io/fdio/release/install]:


	vpp


	libvppinfra-dev


	vpp-dev


	hicn-plugin-dev


	collectd and collectd-dev: sudo apt install collectd collectd-dev libyajl-dev







Getting started

Collectd needs to be configured in order to use the hICN plugins.
To enable the plugins, add the following lines to /etc/collectd/collectd.conf:

LoadPlugin vpp
LoadPlugin vpp_hicn





Before running collectd, a vpp forwarder must be started. If the vpp-hicn plugin
is used, the hicn-plugin must be available in the vpp forwarder.

If you need the custom types that the two plugins define, they are present in
telemetry/custom_types.db. It is useful if you are using InfluxDB as it
requires the type database for multi-value metrics (see CollectD protocol
support in
InfluxDB [https://docs.influxdata.com/influxdb/v1.7/supported_protocols/collectd/]).



Plugin options

vpp and vpp-hicn have the same two options:


	Verbose enables additional statistics. You can check the sources to have an
exact list of available metrics.


	Tag tags the data with the given string. Useful for identifying the context
in which the data was retrieved in InfluxDB for instance. If the tag value is
None, no tag is applied.





Example: storing statistics from vpp and vpp-hicn

We’ll use the rrdtool and csv plugins to store statistics from vpp and vpp-hicn.
Copy the configuration below in a file called collectd.conf and move
it to /etc/collectd:

######################################################################
# Global                                                             #
######################################################################
FQDNLookup true
BaseDir "/var/lib/collectd"
Interval 1
# if you are using custom_types.db, you can specify it
TypesDB "/usr/share/collectd/types.db" "/etc/collectd/custom_types.db"

######################################################################
# Logging                                                            #
######################################################################
LoadPlugin logfile

<Plugin logfile>
  LogLevel "info"
  File "/var/log/collectd.log"
  Timestamp true
  PrintSeverity true
</Plugin>

######################################################################
# Plugins                                                            #
######################################################################
LoadPlugin csv
LoadPlugin rrdtool
LoadPlugin vpp
LoadPlugin vpp_hicn

######################################################################
# Plugin configuration                                               #
######################################################################
<Plugin csv>
  DataDir "/var/lib/collectd/csv"  # the folder where statistics are stored in csv
  StoreRates true
</Plugin>

<Plugin rrdtool>
  DataDir "/var/lib/collectd/rrd"  # the folder where statistics are stored in rrd
</Plugin>

<Plugin vpp>
  Verbose true
  Tag "None"
</Plugin>

<Plugin vpp_hicn>
  Verbose true
  Tag "None"
</Plugin>





Run vpp and collectd:

systemctl start vpp
systemctl start collectd










          

      

      

    

  

    
      
          
            
  
Utility applications


Introduction

hicn-ping-server, hicn-ping-client and hiperf are three utility applications
for testing and benchmarking stack.



Using hICN utils applications


Dependencies

Build dependencies:


	C++14 (clang++ / g++)


	CMake 3.4




Basic dependencies:


	OpenSSL


	pthreads


	libevent


	libhicntransport







Executables

The utility applications are a set of binary executables consisting of a
client/server ping applications (hicn-ping-server and hicn-ping-client) and
a hicn implementation of iPerf (hiperf).


hicn-ping-server

The command hicn-ping-server runs the server side ping application.
hicn-ping-server can be executed with the following options:

usage: hicn-ping-server [options]

Options:
-s <content_size>           = object content size (default 1350B)
-n <hicn_name>              = hicn name (default b001::/64)
-f                          = set tcp flags according to the flag received (default false)
-l <lifetime>               = data lifetime
-r                          = always reply with a reset flag (default false)
-t <ttl>                    = set ttl (default 64)
-d                          = daemon mode
-H                          = help





Example:

hicn-ping-server -n c001::/64







hicn-ping-client

The command hicn-ping-client runs the client side ping application.
hicn-ping-client can be executed with the following options:

usage: hicn-ping-client [options]

Options:
-i <ping_interval>          = ping interval in microseconds (default 1000000ms)
-m <max_pings>              = maximum number of pings to send (default 10)
-s <source_port>            = source port (default 9695)
-d <destination_port>       = destination port (default 8080)
-t <ttl>                    = set packet ttl (default 64)
-O                          = open tcp connection (three way handshake) (default false)
-S                          = send always syn messages (default false)
-A                          = send always ack messages (default false)
-n <hicn_name>              = hicn name (default b001::1)
-l <lifetime>               = interest lifetime in milliseconds (default 500ms)
-H                          = help





Example:

hicn-ping-client -n c001::1







hiperf

The command hiperf is a tool for performing network throughput measurements
with hicn. It can be executed as server or client using the following options:

HIPERF - Instrumentation tool for performing active networkmeasurements with hICN
usage: hiperf [-S|-C] [options] [prefix|name]

SERVER OR CLIENT:
-D                                      Run as a daemon
-R                                      Run RTC protocol (client or server)
-f      <filename>                      Log file
-z      <io_module>                     IO module to use. Default: hicnlightng_module
-F      <conf_file>                     Path to optional configuration file for libtransport
-a                                      Enables data packet aggregation. Works only in RTC mode
-X      <param>                         Set FEC params. Options are Rely_K#_N# or RS_K#_N#

SERVER SPECIFIC:
-A      <content_size>                  Sends an application data unit in bytes that is published once before exit
-s      <packet_size>                   Data packet payload size.
-r                                      Produce real content of <content_size> bytes
-m      <manifest_capacity>             Produce transport manifest
-l                                      Start producing content upon the reception of the first interest
-K      <keystore_path>                 Path of p12 file containing the crypto material used for signing packets
-k      <passphrase>                    String from which a 128-bit symmetric key will be derived for signing packets
-p      <password>                      Password for p12 keystore
-y      <hash_algorithm>                Use the selected hash algorithm for computing manifest digests (default: SHA256)
-x                                      Produces application data units of size <content_size> without resetting the name suffix to 0.
-B      <bitrate>                       RTC producer data bitrate, to be used with the -R option.
-I                                      Interactive mode, start/stop real time content production by pressing return. To be used with the -R option
-T      <filename>                      Trace based mode, hiperf takes as input a file with a trace. Each line of the file indicates the timestamp and the size of the packet to generate. To be used with the -R option. -B and -I will be ignored.
-E                                      Enable encrypted communication. Requires the path to a p12 file containing the crypto material used for the TLS handshake
-G      <port>                          Input stream from localhost at the specified port

CLIENT SPECIFIC:
-b      <beta_parameter>                RAAQM beta parameter
-d      <drop_factor_parameter>         RAAQM drop factor parameter
-L      <interest lifetime>             Set interest lifetime.
-u      <delay>                         Set max lifetime of unverified packets.
-M      <input_buffer_size>             Size of consumer input buffer. If 0, reassembly of packets will be disabled.
-W      <window_size>                   Use a fixed congestion window for retrieving the data.
-i      <stats_interval>                Show the statistics every <stats_interval> milliseconds.
-c      <certificate_path>              Path of the producer certificate to be used for verifying the origin of the packets received.
-k      <passphrase>                    String from which is derived the symmetric key used by the producer to sign packets and by the consumer to verify them.
-t                                      Test mode, check if the client is receiving the correct data. This is an RTC specific option, to be used with the -R (default: false)
-P                                      Prefix of the producer where to do the handshake
-j      <relay_name>                    Publish received content under the name relay_name.This is an RTC specific option, to be used with the -R (default: false)
-g      <port>                          Output stream to localhost at the specified port
-e      <strategy>                      Enance the network with a realiability strategy. Options 1: unreliable, 2: rtx only, 3: fec only, 4: delay based, 5: low rate, 6: low rate and best path 7: low rate and replication, 8: low rate and best path/replication(default: 2 = rtx only)
-H                                      Disable periodic print headers in stats report.
-n      <nb_iterations>                 Print the stats report <nb_iterations> times and exit.
                                        This option limits the duration of the run to <nb_iterations> * <stats_interval> milliseconds.





Example:

hiperf -S b001::/64
hiperf -C b001::








Client/Server benchmarking using hiperf


hicn-light-daemon

This tutorial will explain how to configure a simple client-server topology and
retrieve network measurements using the hiperf utility.

We consider this simple topology, consisting on two linux VM which are able to
communicate through an IP network (you can also use containers or physical
machines):

|client (10.0.0.1/24; 9001::1/64)|======|server (10.0.0.2/24; 9001::2/64)|





Install the hICN suite on two linux VM. This tutorial makes use of Ubuntu 18.04,
but it could easily be adapted to other platforms.
You can either install the hICN stack using binaries or compile the code. In
this tutorial we will build the code from source.

apt-get update && apt-get install -y curl
curl -s https://packagecloud.io/install/repositories/fdio/release/script.deb.sh | sudo bash
apt-get install -y git \
                   cmake \
                   build-essential \
                   libasio-dev \
                   libcurl4-openssl-dev \
                   --no-install-recommends
mkdir hicn-suite && cd hicn-suite
git clone https://github.com/FDio/hicn.git hicn-src
mkdir hicn-build && cd hicn-build
cmake ../hicn-src -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=../hicn-install -DBUILD_APPS=ON
make -j4 install
export HICN_ROOT=${PWD}/../hicn-install





It should install the hICN suite under hicn-install.


hicn-light forwarder with UDP faces


Server configuration

Create a configuration file for the hicn-light forwarder. Here we are
configuring UDP faces.

server$ mkdir -p ${HICN_ROOT}/etc
server$ LOCAL_IP="10.0.0.1" # Put here the actual IPv4 of the local interface
server$ LOCAL_PORT="12345"
server$ cat << EOF > ${HICN_ROOT}/etc/hicn-light.conf
add listener udp list0 ${LOCAL_IP} ${LOCAL_PORT}
EOF





Start the hicn-light forwarder:

server$ sudo ${HICN_ROOT}/bin/hicn-light-daemon --daemon --capacity 0 --log-file ${HICN_ROOT}/hicn-light.log --config ${HICN_ROOT}/etc/hicn-light.conf





We set the forwarder capacity to 0 because we want to measure the end-to-end
performance without retrieving any data packet from intermediate caches.

Run the hiperf server:

server$ ${HICN_ROOT}/bin/hiperf -S b001::/64





The hiperf server will register the prefix b001::/64 on the local forwarder and
will reply with pre-allocated data packet. In this test we won’t consider
segmentation and reassembly cost.



Client configuration

Create a configuration file for the hicn-light forwarder at the client. Here we
are configuring UDP faces.

client$ mkdir -p ${HICN_ROOT}/etc
client$ LOCAL_IP="10.0.0.2" # Put here the actual IPv4 of the local interface
client$ LOCAL_PORT="12345"
client$ REMOTE_IP="10.0.0.1" # Put here the actual IPv4 of the remote interface
client$ REMOTE_PORT="12345"
client$ cat << EOF > ${HICN_ROOT}/etc/hicn-light.conf
add listener udp list0 ${LOCAL_IP} ${LOCAL_PORT}
add connection udp conn0 ${REMOTE_IP} ${REMOTE_PORT} ${LOCAL_IP} ${LOCAL_PORT}
add route conn0 b001::/16 1
EOF





Run the hicn-light forwarder:

client$ sudo ${HICN_ROOT}/bin/hicn-light-daemon --daemon --capacity 1000 --log-file ${HICN_ROOT}/hicn-light.log --config ${HICN_ROOT}/etc/hicn-light.conf





Run the hiperf client:

client$ ${HICN_ROOT}/bin/hiperf -C b001::1 -W 50
EOF





This will run the client with a fixed window of 50 interests.




hicn-light forwarder with hICN faces

For sending hICN packets directly over the network, using hicn faces, change
the configuration of the two forwarders and restart them.



Server

server$ mkdir -p ${HICN_ROOT}/etc
server$ LOCAL_IP="9001::1"
server$ cat << EOF > ${HICN_ROOT}/etc/hicn-light.conf
add listener hicn lst 0::0
add punting lst b001::/16
add listener hicn list0 ${LOCAL_IP}
EOF







Client

client$ mkdir -p ${HICN_ROOT}/etc
client$ LOCAL_IP="9001::2"
client$ REMOTE_IP="9001::1"
client$ cat << EOF > ${HICN_ROOT}/etc/hicn-light.conf
add listener hicn lst 0::0
add punting lst b001::/16
add listener hicn list0 ${LOCAL_IP}
add connection hicn conn0 ${REMOTE_IP} ${LOCAL_IP}
add route conn0 b001::/16 1
EOF








VPP based hicn-plugin

In this example we will do a local hiperf client-server communication. First,
we need to compile the hicn stack and enable VPP [https://github.com/FDio/vpp]
support:

apt-update && apt-get install -y curl
curl -s https://packagecloud.io/install/repositories/fdio/release/script.deb.sh | sudo bash
apt-get install -y git \
                   cmake \
                   build-essential \
                   libasio-dev \
                   vpp vpp-dev vpp-plugin-core libvppinfra \
                   libmemif libmemif-dev \
                   python3-ply \
                   --no-install-recommends
mkdir hicn-suite && cd hicn-suite
git clone https://github.com/FDio/hicn.git hicn-src
mkdir hicn-build && cd hicn-build
cmake ../hicn-src -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr -DBUILD_APPS=ON -DBUILD_HICNPLUGIN=ON
sudo make -j 4 install
export HICN_ROOT=${PWD}/../hicn-install





Make sure vpp is running:

sudo systemctl restart vpp





Run the hicn-plugin:

vppctl hicn control start





Run hiperf server:

hiperf -S b001::/64





Run hiperf client:

hiperf -C b001::1 -W 300










          

      

      

    

  

    
      
          
            
  
Applications

The open source distribution provides a few application examples: a MPEG-DASH
video player, a HTTP reverse proxy, a command line HTTP GET client.

hICN sockets have been successfully used to serve HTTP, RTP and RSockets
application protocols.


Dependencies

Build dependencies:


	C++14 ( clang++ / g++ )


	CMake 3.5 or higher




Basic dependencies:


	OpenSSL


	pthreads


	libevent


	libcurl


	libhicntransport






Executables


hicn-http-proxy

hicn-http-proxy is a reverse proxy which can be used for augmenting the
performance of a legacy HTTP/TCP server by making use of hICN. It performs
the following operations:


	Receive a HTTP request from a hICN client


	Forward it to a HTTP server over TCP


	Receive the response from the server and send it back to the client




hicn-http-proxy [HTTP_PREFIX] [OPTIONS]

HTTP_PREFIX: The prefix used for building the hicn names.

Options:
-a <server_address>   = origin server address
-p <server_port>      = origin server port
-c <cache_size>       = cache size of the proxy, in number of hicn data packets
-m <mtu>              = mtu of hicn packets
-P <prefix>           = optional most significant 16 bits of hicn prefix, in hexadecimal format





Example:

./hicn-http-proxy http://webserver -a 127.0.0.1 -p 8080 -c 10000 -m 1200 -P b001





The hICN names used by the hicn-http-proxy for naming the HTTP responses are
composed in the following way, starting from the most significant byte:


	The first 2 bytes are the prefix specified in the -P option


	The next 6 bytes are the hash (Fowler–Noll–Vo non-crypto hash) of the locator
(in the example webserver, without the http:// part)


	The last 8 bytes are the hash (Fowler–Noll–Vo non-crypto hash) of the http
request corresponding to the response being forwarded back to the client.






higet

Higet is a non-interactive HTTP client working on top oh hICN.

higet [option]... [url]
Options:
-O <output_path>            = write documents to <output_file>. Use '-' for stdout.
-S                          = print server response.
-P                          = optional first 16 bits of hicn prefix, in hexadecimal format

Example:
./higet -P b001 -O - http://webserver/index.html





The hICN names used by higet for naming the HTTP requests are composed the
way described in hicn-http-proxy.




HTTP client-server with hicn-http-proxy

We consider the following topology, consisting on two linux VMs which are able
to communicate through an IP network (you can also use containers or physical
machines):

|client (10.0.0.1/24; 9001::1/64)|======|server (10.0.0.2/24; 9001::2/64)|





Install the hICN suite on two linux VM. This tutorial makes use of Ubuntu 18.04,
but it could easily be adapted to other platforms. You can either install the hICN
stack using binaries or compile the code. In this tutorial we will make use of
docker container and binaries packages.

The client will use of the hicn-light forwarder, which is lightweight and tailored
for devices such as android and laptops. The server will use the hicn-plugin of vpp,
which guarantees better performances and it is the best choice for server applications.

Keep in mind that on the same system the stack based on vpp forwarder cannot
coexist with the stack based on hicn light.

For running the hicn-plugin at the server there are two main alternatives:


	Use a docker container


	Run the hicn-plugin directly in a VM or Bare Metal Server





Docker VPP hICN proxy

Install docker in the server VM:

server$ curl get.docker.com | bash





Run the hicn-http-proxy container. Here we use a public server at localhost as
origin and HTTP traffic is server with an IPv6 name prefix b001.

#!/bin/bash

# http proxy options
ORIGIN_ADDRESS=${ORIGIN_ADDRESS:-"localhost"}
ORIGIN_PORT=${ORIGIN_PORT:-"80"}
CACHE_SIZE=${CACHE_SIZE:-"10000"}
DEFAULT_CONTENT_LIFETIME=${DEFAULT_CONTENT_LIFETIME:-"7200"}
HICN_MTU=${HICN_MTU:-"1300"}
FIRST_IPV6_WORD=${FIRST_IPV6_WORD:-"b001"}
USE_MANIFEST=${USE_MANIFEST:-"true"}
HICN_PREFIX=${HICN_PREFIX:-"http://webserver"}

# udp punting
HICN_LISTENER_PORT=${HICN_LISTENER_PORT:-33567}
TAP_ADDRESS_VPP=192.168.0.2
TAP_ADDRESS_KER=192.168.0.1
TAP_ADDRESS_NET=192.168.0.0/24
TAP_ID=0
TAP_NAME=tap${TAP_ID}

vppctl create tap id ${TAP_ID}
vppctl set int state ${TAP_NAME} up
vppctl set interface ip address tap0 ${TAP_ADDRESS_VPP}/24
ip addr add ${TAP_ADDRESS_KER}/24 brd + dev ${TAP_NAME}

# Redirect the udp traffic on port 33567 (The one used for hicn) to vpp
iptables -t nat -A PREROUTING -p udp --dport ${HICN_LISTENER_PORT} -j DNAT \
                   --to-destination ${TAP_ADDRESS_VPP}:${HICN_LISTENER_PORT}
# Masquerade all the traffic coming from vpp
iptables -t nat -A POSTROUTING -j MASQUERADE --src ${TAP_ADDRESS_NET} ! \
                                 --dst ${TAP_ADDRESS_NET} -o eth0
# Add default route to vpp
vppctl ip route add 0.0.0.0/0 via ${TAP_ADDRESS_KER} ${TAP_NAME}
# Set UDP punting
vppctl hicn punting add prefix ${FIRST_IPV6_WORD}::/16 intfc ${TAP_NAME}\
                                type udp4 dst_port ${HICN_LISTENER_PORT}

# Run the http proxy
PARAMS="-a ${ORIGIN_ADDRESS} "
PARAMS+="-p ${ORIGIN_PORT} "
PARAMS+="-c ${CACHE_SIZE} "
PARAMS+="-m ${HICN_MTU} "
PARAMS+="-P ${FIRST_IPV6_WORD} "
PARAMS+="-l ${DEFAULT_CONTENT_LIFETIME} "
if [ "${USE_MANIFEST}" = "true" ]; then
  PARAMS+="-M "
fi

hicn-http-proxy ${PARAMS} ${HICN_PREFIX}





Docker images of the example above are available at
https://hub.docker.com/r/icnteam/vhttpproxy.
Images can be pulled using the following tags.

docker pull icnteam/vhttpproxy:amd64
docker pull icnteam/vhttpproxy:arm64






Client side

Run the hicn-light forwarder:

client$ sudo /usr/bin/hicn-light-daemon --daemon --capacity 1000 --log-file \
                   ${HOME}/hicn-light.log --config ${HOME}/etc/hicn-light.conf





Run the http client higet and print the http response on stdout:

client$ /usr/bin/higet -O - http://webserver/index.html -P c001








Host/VM

You can install the hicn-plugin of vpp on your VM and directly use DPDK
compatible nics, forwarding hicn packets directly over the network. DPDK
compatible nics can be used inside a container as well.

server$ sudo apt-get install -y hicn-plugin vpp-plugin-dpdk hicn-apps-memif





It will install all the required deps (vpp, hicn apps and libraries compiled for
communicating with vpp using shared memories). Configure VPP following the steps
described here [https://github.com/FDio/hicn/blob/master/hicn-plugin/README.md#configure-vpp].

This tutorial assumes you configured two interfaces in your server VM:


	One interface which uses the DPDK driver, to be used by VPP


	One interface which is still owned by the kernel




The DPDK interface will be used for connecting the server with the hicn client,
while the other interface will guarantee connectivity to the applications running
in the VM, including the hicn-http-proxy. If you run the commands:

server$ sudo systemctl restart vpp
server$ vppctl show int





The output must show the dpdk interface owned by VPP:

              Name               Idx    State  MTU (L3/IP4/IP6/MPLS)     Counter          Count
GigabitEthernetb/0/0              1     down         9000/0/0/0
local0                            0     down          0/0/0/0





If the interface is down, bring it up and assign the correct ip address to it:

server$ vppctl set int state GigabitEthernetb/0/0 up
server$ vppctl set interface ip address GigabitEthernetb/0/0 9001::1/64





Take care of replacing the interface name (GigabitEthernetb/0/0) with the
actual name of your interface.

Now enable the hicn plugin and set the punting for the hicn packets:

server$ vppctl hicn control start
server$ vppctl hicn punting add prefix c001::/16 intfc GigabitEthernetb/0/0 type ip





Run the hicn-http-proxy app:

server$ sudo /usr/bin/hicn-http-proxy -a example.com -p 80 -c 10000 -m 1200 -P c001 http://webserver





Configure the client for sending hicn packets without any udp encapsulation:

client$ mkdir -p ${HOME}/etc
client$ LOCAL_IP="9001::2"
client$ REMOTE_IP="9001::1"
client$ cat << EOF > ${HOME}/etc/hicn-light.conf
add listener hicn lst 0::0
add punting lst c001::/16
add listener hicn list0 ${LOCAL_IP}
add connection hicn conn0 ${REMOTE_IP} ${LOCAL_IP}
add route conn0 c001::/16 1
EOF





Restart the forwarder:

client$ sudo killall -INT hicn-light-daemon
client$ sudo /usr/bin/hicn-light-daemon --daemon --capacity 1000 --log-file ${HOME}/hicn-light.log --config ${HOME}/etc/hicn-light.conf





Retrieve a web page:

client$ /usr/bin/higet -O - http://webserver/index.html -P c001










          

      

      

    

  

    
      
          
            
  
HICN Plugin for Wireshark

The packethicn plugin adds support to Wireshark to parse and dissect HICN
traffic.

packethicn can be compiled and installed in two ways:


	Alongside HICN, from the HICN root dir (see Build with
HICN)


	As a standalone component (see Standalone build)




The second one is preferred if HICN is already installed in the system.



Supported platforms

packethicn has been tested in


	Ubuntu 20.04


	macOS 12.3




Other platforms and architectures may work.



Installation


Build with HICN


Dependencies

$ sudo add-apt-repository ppa:wireshark-dev/stable

$ sudo apt install -y build-essential cmake wireshark wireshark-dev libgcrypt-dev libgnutls28-dev







Build and install

From the root HICN dir add the -DBUILD_WSPLUGIN flag to cmake.

$ cd hicn
$ mkdir build; cd build
$ cmake -DBUILD_APPS=ON -DBUILD_WSPLUGIN=ON ..
$ make -j`nproc`
$ sudo make install








Standalone build


Linux (Ubuntu)


Install dependencies

$ sudo add-apt-repository ppa:wireshark-dev/stable
$ curl -s https://packagecloud.io/install/repositories/fdio/release/script.deb.sh | sudo bash
$ sudo apt install -y build-essential cmake libhicn-dev wireshark wireshark-dev libgcrypt-dev libgnutls28-dev







Compile and install HICN wireshark plugin

$ cd packethicn
$ mkdir build; cd build
$ cmake ..
$ make
$ sudo make install








macOS

If installing wireshark via brew use the ./install_macos.sh script as shown below:

$ brew tap icn-team/hicn-tap
$ brew install hicn
$ brew install wireshark
$ brew install cask wireshark
$ cd packethicn
$ ./install_macos.sh





Otherwise (if wireshark was compiled from sources) you can follow the setup for Linux:

$ cd packethicn
$ mkdir build; cd build
$ cmake ..
$ make
$ sudo make install









Usage


Filters




	Filter
	Description
	Example





	hicn
	HICN traffic only
	hicn



	hicn.l3.src
	Source address / Name Prefix (of data)
	hicn.l3.src == b001::a8f:ae2a:bd5b:0:0



	hicn.l3.dst
	Destination address / Name Prefix (of interest)
	hicn.l3.dst == b001::a8f:ae2a:bd5b:1111:0



	hicn.l4.namesuffix
	Name Suffix
	hicn.l4.namesuffix == 0x21



	hicn.l4.pathlabel
	Path Label
	hicn.l4.pathlabel == 0xbb



	hicn.l4.timescale
	Timescale
	hicn.l4.timescale == 4



	hicn.l4.flags
	Flags
	hicn.l4.flags == 0x42



	hicn.l4.flags.id
	ID Flag
	hicn.l4.flags.id == 1



	hicn.l4.flags.man
	MAN Flag
	hicn.l4.flags.man == 0



	hicn.l4.flags.sig
	SIG Flag
	hicn.l4.flags.sig == 0



	hicn.l4.ldr
	Loss Detection and Recovery
	hicn.l4.ldr > 0



	hicn.l4.csum
	Checksum
	hicn.l4.csum > 0



	hicn.l4.lifetime
	Lifetime
	hicn.l4.lifetime == 1000








          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/comment.png





_static/down-pressed.png





_static/down.png





nav.xhtml

    
      Table of Contents


      
        		
          Hybrid Information-Centric Networking
        


        		
          Data identifiers and locators
        


        		
          Producer/Consumer Architecture
        


        		
          Packet forwarding
        


        		
          Relay nodes
        


        		
          Code structure
          
            		
              Introduction
            


            		
              Directory layout
            


            		
              Release note
            


            		
              Supported platforms
              
                		
                  Ubuntu
                


                		
                  macOS
                


                		
                  Android
                


                		
                  iOS
                


                		
                  Windows
                


                		
                  Docker
                


                		
                  Vagrant
                


              


            


            		
              References
            


            		
              License
            


          


        


        		
          Core library
          
            		
              Introduction
            


            		
              Directory layout
            


            		
              Using libhicn
              
                		
                  Dependencies
                


              


            


            		
              Installation
              
                		
                  Release mode
                


                		
                  Debug mode
                


              


            


          


        


        		
          VPP Plugin
          
            		
              Introduction
            


            		
              Quick start
            


            		
              Using hICN plugin
              
                		
                  Dependencies
                


              


            


            		
              Getting started
              
                		
                  Setup the host for VPP
                


                		
                  Configure VPP
                


                		
                  Start VPP
                


                		
                  Configure hICN plugin
                


                		
                  Example: consumer and producer ping
                


                		
                  Example: packet generator
                


              


            


          


        


        		
          Introduction
        


        		
          Build dependencies
          
            		
              Ubuntu
            


            		
              macOS
            


          


        


        		
          Build the library
          
            		
              Compile options
            


            		
              Install the library
            


          


        


        		
          Usage
          
            		
              Configuration file
            


          


        


        		
          Security
          
            		
              Per-packet signatures
            


            		
              Enabling manifests
            


            		
              Handling authentication failures
            


            		
              Supported crypto suites
            


          


        


        		
          Logging
        


        		
          Portable forwarder
          
            		
              Introduction
            


            		
              Using hicn-light
              
                		
                  Dependencies
                


              


            


            		
              hicn-light executables
              
                		
                  hicn-light daemon
                


                		
                  hicn-light-control
                


                		
                  hicn-light configuration file example
                


              


            


          


        


        		
          Face manager
          
            		
              Overview
              
                		
                  Platform and supported interfaces
                


              


            


            		
              Developing a new interface
              
                		
                  Dummy template
                


                		
                  Hands-on
                


              


            


          


        


        		
          Control plane support
        


        		
          Telemetry
          
            		
              Introduction
            


            		
              Quick start
            


            		
              Using hICN collectd plugins
              
                		
                  Platforms
                


                		
                  Dependencies
                


              


            


            		
              Getting started
            


            		
              Plugin options
              
                		
                  Example: storing statistics from vpp and vpp-hicn
                


              


            


          


        


        		
          Utility applications
          
            		
              Introduction
            


            		
              Using hICN utils applications
              
                		
                  Dependencies
                


              


            


            		
              Executables
              
                		
                  hicn-ping-server
                


                		
                  hicn-ping-client
                


                		
                  hiperf
                


              


            


            		
              Client/Server benchmarking using hiperf
              
                		
                  hicn-light-daemon
                


                		
                  VPP based hicn-plugin
                


              


            


          


        


        		
          Applications
          
            		
              Dependencies
            


            		
              Executables
              
                		
                  hicn-http-proxy
                


                		
                  higet
                


              


            


            		
              HTTP client-server with hicn-http-proxy
              
                		
                  Docker VPP hICN proxy
                


                		
                  Host/VM
                


              


            


          


        


        		
          HICN Plugin for Wireshark
        


        		
          Supported platforms
        


        		
          Installation
          
            		
              Build with HICN
              
                		
                  Dependencies
                


                		
                  Build and install
                


              


            


            		
              Standalone build
              
                		
                  Linux (Ubuntu)
                


                		
                  macOS
                


              


            


          


        


        		
          Usage
          
            		
              Filters
            


          


        


      


    
  

_static/fdio_logo.png
io





_static/file.png





_static/fd-io_red_white.png





_static/up-pressed.png





_static/minus.png





_static/plus.png





_static/up.png





